
OUNK - AN AUDIO SCRIPTING ENVIRONMENT FOR SIGNAL
PROCESSING AND MUSIC COMPOSITION

Olivier Bélanger
Laboratoire informatique acoustique et musique (LIAM)

Faculté de musique, Université de Montréal
Centre for interdisciplinary research in music and media technology (CIRMMT)

Montréal, Québec, Canada

ABSTRACT

In this paper, an audio scripting environment, called Ounk
[1] is presented. Ounk uses Python [3] as a program-
ming language and Csound [2] as an audio engine. It can
be used for a variety of tasks such as composing, sound
design, live performances, developing signal processing
chains and much more. In addition to its powerful syn-
thesis and sampling capabilities, it supports MIDI, Open
Sound Control and Human Interface Device protocols. An
interface is provided to facilitate writing of scripts and
managing complex musical projects. The Ounk environ-
ment includes many functions to easily create loops, se-
quencers, midi synthesizers and more. Ounk combines the
large and varied set of Csound unit generators and the po-
wer of the Python programming language. Since its com-
ponents are all multi-platform, Ounk runs on OS X, Win-
dows and Linux systems.

1. INTRODUCTION

Many computer music systems, newer than Csound,
are available today to develop signal processing chains.
Some provide graphical patch editors (e.g. Max/MSP, PD)
and some others use more advanced techniques of soft-
ware engineering, with their own language for program-
ming modules (e.g. SuperCollider, ChucK). The main rea-
sons for choosing Csound as an audio engine are that it
runs on almost every platforms, has a huge unit genera-
tors library, features very good sound quality and can be
run independently of any interface, making it easy to use
as a library inside any programming language. The deve-
lopment of a scripting environment for Csound was moti-
vated by the need for algorithms to rapidly generate musi-
cal and sound descriptors without having to write Csound
orchestras and scores. The script takes care of both, as
well as of all flags, headers and syntactic particularities of
Csound. Another advantage of this environment is the use
of Python to write scripts. Python is very easy to learn,
is used for all kinds of applications, and comes with a
large high-level functions library. Learning programming
with Python can be helpful, not just for musical purposes,
but for a lot of programming tasks. In this context, home-
made classes and functions can be written and imported

into scripts to give more flexibility when designing musi-
cal projects.

2. OUNK STRUCTURE

The core of Ounk is a library of functions, called ounk-
lib. The Ounk library can also be imported in a Python
program outside of the Ounk environment. Functions are
classified in various categories : sources, table genera-
tion, table process, controls, algorithmic, analysis, effects,
etc. Each category provides functions to perform a spe-
cific kind of action. Ounklib functions are used inside a
common Python script and compile everything needed to
generate the desired sound processing code in a .csd file
(Csound unified file format). The function startCsound
calls Csound to run the .csd file. All functions can output
mono, stereo, quad or octophonic signals by selecting the
number of channels in the function setAudioAttributes.
Although Ounk comes with an interface, it is also very
easy to run a script from a command-line. One simply
needs to place the Ounk resources folder in the current
working directory. The interface gives more flexibility to
the user with shortcuts, documentation window, the possi-
bility to run multiple scripts at the same time and more.

In order to give full control over music performance,
Ounk supports many protocols : MIDI, OSC and HID.
MIDI is perhaps the most common for musicians. It allows
manipulation of MIDI synthesizers created in the script
and all support for live transformation with controllers.
Open Sound Control offers a simple and efficient way to
communicate between Csound and Python or any exter-
nals software that support OSC protocols. Some hardware
devices are starting to offer native OSC support as well.
Human Interface Devices, commonly a USB game device,
can be retrieved inside Python, and Ounk provides func-
tions to easily map their values and use them as musical
controllers.

3. OUNK INTERFACE

The interface is built with wxPython [4], a multi-
platform graphical toolkit based on wxWidgets that takes
native themes of the system on which it is running.

Figure 1. Control and Functions tree panel.

The interface is divided in four panels. The first one
from the left (see Figure 1) is the command panel with
a single button to run scripts and a tree that contains all
functions provided by Ounk. If a function is selected in the
tree, its documentation page is automatically displayed in
the reference panel on the right. A double-clic on a func-
tion will automatically insert it in the text at the position
of the cursor. There is a folder with all the examples, in
tutorial format, that come with Ounk and a double-clic on
any of them will open it in a new window.

The middle panel (see Figure 2) is a script editor. It
handles multiple files and allows colorization and auto-
completion. Like the multicore rendering capabilities of
Ounk, scripts in the editor can run their process in parallel,
allowing the distribution of complex musical structures to
multiple sections each of which can be started and stopped
at any time during the performance.

Figure 2. Script editor panel.

The right panel (see Figure 3) shows the online docu-
mentation about the function under the cursor location. It
explains what the function does and shows its default pa-
rameter values.

Figure 3. Function documentation panel.

Figure 4. Python interpreter panel.

At the bottom of the window is a Python interpreter
console (see Figure 4) where the Python commands are
parsed. This is done line by line instead of simply calling
Python to run the script, in order to allow direct user inter-
action with the musical processes during performance. For
example, it is possible to create a metronome with a given
tempo in the script and then modify the tempo during the
performance by assigning a new value in the interpreter.
The console is also useful to see what errors occur in the
execution of a script.

4. FUNCTIONS STRUCTURE

There are different kinds of functions available to build
complex musical projects. Some of these are flags to de-
fine a particular kind of instrument structure : midi syn-
thesizers, tap sequencers, loops or instruments controlled
by Python’s call (see section 5). A group of functions,
called algorithmic, are designed to generate musical ma-
terial. Rhythmic and melodic material or Markov chain
processes are easily produced with embedded classes and
methods.

An overview of the functions provided by the Ounk
library can be founded on the development web site [5].

Most functions in the Ounk library are dedicated to
handling Csound syntax and creating lines of .csd files.
Control values are easily passed from one function to ano-
ther. The sending function uses a unique name to the para-
meter bus. This unique name can be used by any receiving
function through the use of a parameter xxxVar (xxx is the
name of the parameter to be modified). Audio samples can
be passed between functions in the same way as control
values. The sending function uses a unique name to the
parameter out. This unique name can be used by any re-
ceiving function through the use of a parameter input. By
default, a function generating audio samples will send to
an audio signal converter (dac). The example shown be-
low will play the sound ounkmaster.aif for a duration of
10 seconds through a lowpass filter with a little variation
of pitch.

setGlobalDuration(10)
randomi(bus=’pit’, mini=.95, maxi=1.05)
playSound(’ounkmaster.aif’, pitch=1, pitchVar=’pit’,

out=’snd’)
bandpass(input=’snd’, cutoff=3000)
startCsound()

Each function can have its own duration, but if no dura-
tion is specified (duration = None), it will take, as the de-
fault value, the global duration of the script defined with

setGlobalDuration(dur). If this function is omitted, the
script plays endlessly. The start time defaults to a value of
0, corresponding to the beginning of the performance.

One the most powerful features of these functions is
the management of lists as parameter values. First, the
function measures the length of the longest input and then
creates as many events as necessary to match. If a shorter
list is given to some other parameter, the values will wrap
around in this list during the creation of the events. The
example below will play 100 sine waves indefinitely with
frequencies randomly chosen and an alternating pan.

pits = [random.randint(100,900) for i in range(100)]
sine(pitch=pits, amplitude=.05, pan=[0,1])
startCsound()

Here is an example of the use of MIDI controllers to
modify, in real-time, pitch and amplitude of a sine wave.

midiCtl(bus=[’pit’, ’amp’], ctlnumber=[74,71],
minscale=.5, maxscale=2)

sine(pitch=500, pitchVar=’pit’, amplitudeVar=’amp’)
startCsound()

5. INSTRUMENTS

Some part of the code can define a special kind of ins-
trument, to be controlled from different sources. These
instruments are interleaved between two function flags,
beginXXX and endXXX, where XXX corresponds to a
particular instrument. For example, all functions between
beginLoop and endLoop will be played in loop for the
duration specified as a parameter to beginLoop. This fea-
ture allows the creation of very powerful processes with
only a few lines of code.

5.1. MIDI synthesizer

A midi synthesizer is a process that will respond when
a midi note is sent to Csound. It is defined between the
function flags beginMidiSynth and endMidiSynth. At
this time, up to 16 synthesizers, each assigned to a dif-
ferent midi channel, can be defined in one script. Poly-
phony and overlap are completely handled inside Csound.
Volume and pitch bend controllers are always mapped in
the synthesizer and are scalable by the user. Other control-
lers can be used with the midiSynthCtl function. It is also
possible to get control values from a controller bus defined
outside the synthesizer with midiSynthGetBus. Inside a
midi synthesizer, pitches of instruments are transposed on
the basis of a user-defined centralkey.

beginMidiSynth(centralkey=60, release=2, pitchbend=2)
freqMod(pitch=[100,50], modulator=.498, pan=[0,1])
pluckedString(pitch=100, amplitude=.5)
endMidiSynth(out=’toReverb’)

Ounk provides functions to split the keyboard into re-
gions (splitKeyboard) and to assign different processes
to different velocity layers (splitVelocity).

5.2. Step sequencer

A Step sequencer is controlled by a metronome and
reads one or more rhythm table. When a positive value is
triggered in the current table, the sequencer plays whate-
ver is defined inside the functions beginSequencer and
endSequencer. A sequence can be triggered on and off
during performance, allowing live mixing of multiple se-
quences running in parallel. Any specific parameter of
any function can be assigned to a given table for dyna-
mically transforming the musical data of a sequence. In
the example below, the starting point of a line controlling
the modulation index of a FM synthesis is decreased on
each step of the sequence.
env = genAdrs()
tapTable = genDataTable([1]*16)

values to assign to a parameter on each tap
var = genDataTable([1,.96,.91,.85,.8,.75,.7,.64,.58,.5,

.42,.34,.26,.2,.14,.1])
metro(bus=’metro’, tempo=120)
beginSequencer(input=’metro’, table=tapTable)

modify a parameter on each tap
seqParameterTable(’i1’, var)

’i1’ is the parameter to modify
linsegr(bus=’index’, i1=1, dur1=.1, i2=.1, duration=.2)
freqMod(pitch=100, amplitude=.1, duration=.25,

envelope=env, index=30, indexVar=’index’)
endSequencer()
startCsound()

5.3. Python instrument

A Python instrument is constructed between functions
beginPythonInst and endPythonInst. It is designed to
receive events directly from Python. A project can handle
as many Python instruments as desired. Each is assigned
to a different voice and can be called independently. A
new value can be assigned to any function’s parameter
on each call, by passing a dictionary to the function sen-
dEvent. A dictionary is a special Python data type often
called associative arrays. Python dictionaries are indexed
by keys.
a simple soundfont instrument
beginPythonInst(1)
soundfont(’piano.sf2’, duration=1)
endPythonInst()

startCsound()

call note(x) to play a note with control on pitch
def note(pitch):

dict = {’soundfont’: {}}
dict[’soundfont’][’midipitch’] = pitch
sendEvent(1, dict)

While the script above is running, function note can
be called in the interpreter or in a Python loop to play a
stream of notes with controls assigned to pitch. This ins-
trument is intended to be used with pattern objects. Pat-
tern objects create a Python timer and follow user-defined
rhythmic values to send events. See more in section 6.

5.4. Loops

Loops, as the name implies, create looped patterns.
Each event, including those created by passing a list as a

parameter’s value, plays for its specified duration and re-
peats for the duration specified for the loop in beginLoop.
Over the duration of the loop, variations can be applied to
modify the duration of individual notes, in order to create
legato or staccato effects. A list of two values is passed
to specify first and last duration multipliers of the loop.
A linear scaling between these two values is applied over
the length of the loop. Amplitude can be controlled in the
same manner.

env = genLineseg([0,10,1,25,.25,100,0])
wave = genWaveform([1,0,.3,0,.2,0,.143])
pits = chord(’Cm7’, octave=10)

beginLoop(amplitude=[1,.05])
waveform(pitch=pits, table=wave, duration=[.4,.6,.8,1],

envelope=env)
endLoop()

In the script above, each note called by the chord will
loop after its duration has finished, creating a subtle rhyth-
mic sequence.

6. ALGORITHMIC

Ounk provides functions to compose algorithmically
inside the Python environment and gives full control of
the defined Csound instruments (see section 5.3). Pattern
objects create their own timers and call a function on the
basis of one or more rhythmic pattern defined by the user.
Inside functions, a Python instrument can be played with
the possibility to change all parameters on each call.

There are some functions that execute algorithmic pro-
cesses, such as markov which implements Markov chains
of an arbitrary order. Management of chords and scales
are very easy with chord and scale functions. Users can
customize the harmonic environment by adding their own
chords and scales in the Ounk dictionaries. Rhythmic
and melodic generation are handled by functions using
controlled random number generators. Random walks, ge-
neration of loop segments, drone and jump and repeaters
are very helpful in composing algorithmic musical pro-
jects.

scl = scale(’Cm’)
rnd = loopseg(25,35)
patterns = [[4,4,2], [4,2,2,1,1], [3,2,2,3], [2,3,2,3]]

def pit(min, max):
if ti1.getBeat() == 1 and (ti1.getBar() % 4) == 0:

ti1.changePattern(random.choice(patterns))
dict = {’soundfont’: {}}
dict[’soundfont’][’midipitch’] = scl[rnd.next()]
dict[’soundfont’][’pan’] = random.randint(0,7)*0.12
sendEvent(1, dict)

tempo = .2
ti1 = pattern(tempo, pit, [3,3,2,2], 24, 36)
ti1.start()
ti1.play()

7. MAKING A GRAPHICAL USER INTERFACE

Since Ounk is based on wxPython, unique graphical
interfaces are easily created for purposes of live perfor-
mance control. It is possible to program an interface from
scratch directly in the script. However, Ounk provides

some functions to make it easier. beginGUI is called to
create a new window. More than one can be created at the
same time. This is where widgets can be packed. Func-
tions like makeButton and makeSlider create a new wid-
get and assign a function to the widget, responding to
control manipulation. The function endGUI closes the de-
finition text and shows the created window. The GUI crea-
ted with the code below is show in Figure 5.

frame = beginGUI(size=(260, 290))
playButton = makeToggle(frame, label=’play’,

pos=(90,20), function=onPlay)
makeSlider(frame, label=’tr1’, mini=-24, maxi=24,

pos=(50,50), function=s1)
makeSlider(frame, label=’tr2’, mini=-24, maxi=24,

pos=(50,120), function=s2)
makeMenu(frame, pos=(90,200), label=’Choose...’,

function=handleMenu)
endGUI(frame)

Figure 5. GUI produced by previous code.

8. CONCLUSION

Ounk is an audio scripting environment combining the
Csound audio engine and the powerful programming lan-
guage Python. The main frame of the software is now
practically completed. The structure to handle signals and
controller streams works very well and will be further de-
veloped. What needs to be done at this point is to complete
the function library by adding modules for continuous
controllers, generative synthesis, signal processing, sound
analysis and algorithmic composition. Also, research with
composers/musicians is planned to know what exactly is
needed for different types of musical work. It is already
clear that Ounk can be very helpful to composers and in-
terpreters who want a simple and efficient environment for
musical explorations.

9. REFERENCES

[1] http ://code.google.com/p/ounk/

[2] http ://csounds.com/

[3] http ://www.python.org/

[4] http ://wxpython.org/

[5] http ://code.google.com/p/ounk/wiki/Overview

	Index
	ICMC 2008 Home
	Conference Info
	Welcome from the ICMA President
	ICMA Officers
	Welcome from the ICMC 2008 Organising Committee
	ICMC 2008
	Previous ICMCs
	ICMC 2008 Paper Panel & Music Curators
	ICMC 2008 Reviewers
	ICMC 2008 Best Paper Award

	Sessions
	Monday, 25 August 2008
	Languages and Environments 1
	Interaction and Improvisation 1
	Sound Synthesis
	Computational Modeling of Music
	Demos 1
	Posters 1
	Interaction and Improvisation 2
	Aesthetics, History, and Philosophy 1

	Tuesday, 26 August 2008
	Miscellaneous
	Algorithmic Composition Tools 1
	Network Performance
	Computational Music Analysis 1
	Panel 1: Reinventing Audio and Music Computation fo ...
	Panel 2: Towards an Interchange Format for Spatial ...

	Wednesday, 27 August 2008
	Studio Reports 1
	Mobile Computer Ensemble Play
	Demos 2
	Posters 2
	Algorithmic Composition Tools 2
	Interface, Gesture, and Control 1

	Thursday, 28 August 2008
	Interface, Gesture, and Control 2
	Languages and Environments 2
	Spatialization 1
	Computational Music Analysis 2
	Panel 3: Network Performance
	Demos 3
	Posters 3

	Friday, 29 August 2008
	Sound Processing
	Aesthetics, History, and Philosophy 2
	Interface, Gesture, and Control 3
	Spatialization 2
	Algorithmic Composition Tools 3
	Studio Reports 2

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Sessions

	Topics
	critical theory/philosophy of technology, postmodern cy ...
	sociology/anthropology of everyday sounds, situated per ...
	history of computer music, women and gender studies, ed ...
	philosophy/culture/psychology, music information retrie ...
	electroacoustic music composition, aesthetics of music, ...
	singing analysis/synthesis, music analysis/synthesis, v ...
	interactive and real-time systems and languages, music ...
	human-computer interaction, sound synthesis/analysis, i ...
	interaction design, computer music, performance art, el ...
	physical interface design, performance systems, gesture ...
	language/education/history/sociology of computer music, ...
	composition systems and techniques, languages for compu ...
	programming languages/systems, audio synthesis/analysis ...
	composition, music cognition, music informatics, human- ...
	music information retrieval, audio signal processing, p ...
	computational musicology, music cognition, music and AI ...
	music cognition, rhythm/meter/timing/tempo, computation ...
	music information retrieval, audio content analysis, to ...
	spatial audio, audio signal processing, auditory percep ...
	physical modelling, spatial audio, room acoustics, aura ...
	sonic interaction design, physics-based sound synthesis ...
	audio signal processing, sound synthesis, acoustics of ...
	audio signal processing, acoustics, software systems
	physics-based sound synthesis, virtual room acoustics
	composition, music analysis, software for pedagogy
	PANEL: Towards an Interchange Format for Spatial audio ...
	PANEL: Network Performance
	PANEL: Reinventing Audio and Music Computation for Many ...

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Olivier Bélanger

